[1]Carlo Adamo and Vincenzo Barone. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mpw and mpw1pw models. The Journal of Chemical Physics, 108(2):664–675, 1998. URL:, doi:10.1063/1.475428.
[2]Carlo Adamo and Vincenzo Barone. Toward reliable density functional methods without adjustable parameters: the pbe0 model. The Journal of Chemical Physics, 110(13):6158–6170, 1999. URL:, doi:10.1063/1.478522.
[3]Xavier Assfeld, Jan E. Almlöf, and Donald G. Truhlar. Degeneracy-corrected perturbation theory for electronic structure calculations. Chemical Physics Letters, 241(4):438 – 444, 1995. URL:, doi:10.1016/0009-2614(95)00650-S.
[4]Jon Baker, Alain Kessi, and Bernard Delley. The generation and use of delocalized internal coordinates in geometry optimization. J Chem Phys, 105:192, 1996. doi:10.1063/1.471864.
[5]A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6):3098–100, 1988. URL:, doi:10.1103/PhysRevA.38.3098.
[6]Axel D. Becke. Density-functional thermochemistry. iii. the role of exact exchange. The Journal of Chemical Physics, 98(7):5648–5652, 1993. URL:, doi:10.1063/1.464913.
[7]M. S. Gopinathan and Karl Jug. Valency. i. a quantum chemical definition and properties. Theoretica chimica acta, 63(6):497–509, 1983. URL:, doi:10.1007/BF00552652.
[8]Stefan Grimme. Semiempirical hybrid density functional with perturbative second-order correlation. The Journal of Chemical Physics, 2006. URL:, doi:10.1063/1.2148954.
[9]Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu. The Journal of Chemical Physics, 2010. URL:, doi:10.1063/1.3382344.
[10]Trygve Helgaker, Helena Larsen, Jeppe Olsen, and Poul Jørgensen. Direct optimization of the \AO\ density matrix in hartree–fock and kohn–sham theories. Chemical Physics Letters, 327(5–6):397 – 403, 2000. URL:, doi:10.1016/S0009-2614(00)00814-9.
[11]Chengteh Lee, Weitao Yang, and Robert G. Parr. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37:785–789, Jan 1988. URL:, doi:10.1103/PhysRevB.37.785.
[12]H. C. Longuet-Higgins and J. A. Pople. The electronic spectra of aromatic molecules IV: excited states of odd alternant hydrocarbon radicals and ions. Proc Phys Soc, A68:591, 1955.
[13]I. Mayer. Charge, bond order and valence in the ab initio scf theory. Chem Phys Lett, 97:270–274, 1983. URL:
[14]I. Mayer. On bond orders and valences in the ab initio quantum chemical theory. Int J Quantum Chem, 29:73–84, 1986. URL:
[15]Janusz Mrozek, Roman F. Nalewajski, and Artur Michalak. Exploring bonding patterns of molecular systems using quantum mechanical bond multiplicities. Pol J Chem, 72:1779–1791, 1998.
[16]R.S. Mulliken. Electronic population analysis on LCAO-MO molecular wave functions. i. J Chem Phys, 23:1833–1840, 1955. URL:
[17]R.S. Mulliken. Electronic population analysis on LCAO-MO molecular wave functions. ii. overlap populations, bond orders, and covalent bond energies. J Chem Phys, 23:1841–1846, 1955. URL:
[18]R.S. Mulliken. Electronic population analysis on LCAO-MO molecular wave functions. iii. effects of hybridization on overlap and gross ao populations. J Chem Phys, 23:2338–2342, 1955. URL:
[19]R.S. Mulliken. Electronic population analysis on LCAO-MO molecular wave functions. iv. bonding and antibonding in lcao and valence-bond theories. J Chem Phys, 23:2343–2346, 1955. URL:
[20]R. F. Nalewajski, J. Mrozek, and G. Mazur. Quantum chemical valence indices from the one-determinantal difference approach. Can J Chem, 74(6):1121–1130, 1996.
[21]Roman F. Nalewajski and Janusz Mrozek. Modified valence indices from the two-particle density matrix. Int J Quantum Chem, 51:187–200, 1994.
[22]J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal, 7(4):308–313, 1965. URL:, arXiv:, doi:10.1093/comjnl/7.4.308.
[23]J.P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23):13244–13249, 1992. cited By 15003. URL:, doi:10.1103/PhysRevB.45.13244.
[24]John P Perdew, P Ziesche, and H Eschrig. Electronic structure of solids’ 91. 1991.
[25]John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77:3865–3868, Oct 1996. URL:, doi:10.1103/PhysRevLett.77.3865.
[26]P. Pulay. Improved scf convergence acceleration. Journal of Computational Chemistry, 3(4):556–560, 1982. URL:, doi:10.1002/jcc.540030413.
[27]Tobias Schwabe and Stefan Grimme. Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. Phys. Chem. Chem. Phys., 8:4398–4401, 2006. URL:, doi:10.1039/B608478H.
[28]J. C. Slater. A simplification of the hartree-fock method. Phys. Rev., 81:385–390, Feb 1951. URL:, doi:10.1103/PhysRev.81.385.
[29]P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of Physical Chemistry, 98(45):11623–11627, 1994. URL:, arXiv:, doi:10.1021/j100096a001.
[30]Vincent Tognetti, Pietro Cortona, and Carlo Adamo. The performances of a parameter-free local correlation functional: the ragot–cortona model. Chemical Physics Letters, 439(4–6):381 – 385, 2007. URL:, doi:10.1016/j.cplett.2007.03.081.
[31]S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics, 58(8):1200–1211, 1980. URL:, arXiv:, doi:10.1139/p80-159.